

TOUCH PANEL CONTROLLER

Delivery Specifications

Model Name: AHL-120N5

* The contents of specifications are subject to change without prior notice for product improvements.

The export of this product from Japan is regulated by the Japanese government. The export of this product may be prohibited without governmental license. To export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call a GUNZE LIMITED sales representative.

GUNZE LIMITED

ELECTRONIC COMPONENTS DIVISION

Electronic Components Division:	10, Shindo, Amarube-cho, Kameoka city, Kyoto (621-0806), Japan
Osaka Sales Section:	Hanahara 6 th Building, 6-8-31, Nishinakajima, Yodogawa-ku, Osaka (532-0011), Japan
	TEL +81-6-6303-6220
Tokyo Sales Section:	GUNZE Nihonbashi Building, 2-10-4, Nihonbashi,
	Chuoh-ku, Tokyo (103-0027), Japan
	TEL +81-3-3276-8717
	Approved by:
	Checked by:
	Checked by:
	Staff Responsible:

APrecautions

(1). Avoid using this panel for applications that may affect people's lives, such as medical equipment, space equipment, aircraft, submarine repeater and other equipment for which extremely high reliability is required.

(2). If you are planning to use this panel for control or security system in transport equipment (train, automobile and vessel or the like), always contact our sales service center in advance.

(3). The quality level of this product is limited to general applications. (Computer, OA equipment, FA equipment, communication equipment, measuring equipment, AV equipment, etc.)

ACautions

- (1). The AHL-120N5 may produce a latch-up phenomenon where higher voltage than VCC and lower voltage than VSS were applied or voltage exceeding the rating was applied between VCC and VSS. If there arises this latch-up, supply current will significantly increase, leading to thermal breakdown of the element from time to time; it is, therefore, necessary to take utmost care so that the maximum rating is not exceeded during operation.
- (2). The operation guarantee range of VCC supply voltage is as specified. Even within this range, however, if there are sudden fluctuations in supply voltage, malfunctions may arise; it is, therefore, necessary to make arrangements so that supply voltage becomes as stable as possible. It is recommended that as a reference for stabilization, VCC ripple fluctuations (P-P value) at commercial frequency (50 to 60Hz) should be controlled to 10% Max. of the standard VCC value and the transient regulation should be controlled to 0.1 V/ms Max. in momentary changes, for example when the power supply is switched.
- (3). When designing the peripheral circuit, make the wiring from the touch panel to the AHL-120N5 as short as possible. Also, do not provide any parts and wiring that may generate noise near this line. Since this line is an analog line, the AHL-120N5 may misjudge touch panel ON/OFF and fail to detect the accurate pressing position when the touch panel was depressed if the wiring becomes longer and it is affected by noise.
- (4). Avoid using the unit in the environment such that there arises dew condensation.
- (5). When handling the AHL-120N5, give special care to static electricity, and provide satisfactory grounding for the operator and work site; otherwise, the AHL-120N5 may be broken.
- (6). The use of this unit exceeding the specified operating voltage and operating temperature may cause failure. Always use the unit within the specifications.
- (7). Store the AHL-120N5 within the temperature and humidity prescribed in the specifications. Do not store the AHL-120N5 in the atmosphere of organic solvent and acid.

* The copy right of this specification belongs to GUNZE LIMITED, and all rights are reserved.

- * The contents of this specification may be changed without notice.
- * Trademarks in this specification: PC/AT is a registered trademark of International Business Machine Corporation (IBM).
 Windows XP, Windows 2000 and Windows Me are registered trademarks of U.S. Microsoft company.
 The others, company's name and product's name, are also registered trademarks of each company.

Date of Revision	Indication for Revision	Revised Contents	Checked by Staff Responsible
Jun. 30, 2008	1 st edition		Takeshi.Kato

CONTENTS

1.	Outline	6
2.	Features	6
	 Power supply Clock frequency Output data resolution Output system Output datarate Output mode 	6 6 6 6 6
	 (7) Applicable touch panel (8) External shape (9) Environmental characteristics 	6 6 6
3.	Usage precaution of 5-wire touch panel	7
4.	Terminal Arrangement Drawing	8
5.	Terminal Function	8
6.	Clock	9
7.	EEPROM Connection	9
8.	Electrical Characteristics	.10
	(1) Absolute maximum rating	10
	(2) DC characteristics - Supply voltage	10
	(3) DC characteristics - Power consumption	10
	 (4) DC characteristics (5) USB module specifications (6)AC(Timing)requirements (7)USB Timing requirements (8) A/D converter characteristics 	10 11 12 12 12
9.	Settings	.13
	 (1) Outline (2) Setting (3)Interface selection (4) Working Mode selection 	13 13 13 13
10	. Output Mode	.13
11	USB Interface	.14
	 (1) Outline (2) Basic specifications (3) Data (Response to IN token) format (4) Descriptor 	14 14 14 15
12	. Serial Interface	.18
	(1) Outline	18

	(2) Output mode	18
	(3) Communication format	18
	(4) Text format	18
	(5) Response speed	19
	(6) Output rate	19
	(7) Command System	20
	(8) Output pattern when the transmission stop and transmission restart commands were received	22
	(9)About Plug and Play	22
13.	Other Functions	23
	(1) Reset	23
	(2) Buzzer	23
	(3) The origin of coordinates	23
	(4) Calibration	23
14.	Outline Drawing	25
15.	Peripheral Circuit Example	26
16.	Mounting Conditions	27
	Warranty Period and Warranty Range	
17.		20
	(1) Warranty period	28
	(2) Warranty range	28
18.	Appendix	29

1. Outline

The AHL-120N5 is a controller to detect the touching position on the touch panel. Even if an unstable data (voltage value) generated when the touch panel was lightly depressed and noise arising due to operating environment are inputted to the AHL-120N5, internal filtering (firmware) is carried out; it is, therefore, possible to detect the pushing pressure position with high precision.

The communication system contains serial (Asynchronous mode) and USB. Where the serial interface is used, direct connection to the COM port of a personal computer or the like is possible by connecting the EIA-232D (RS-232C) transceiver. In the case of USB interface specification, direct connection to the USB port of a personal computer, etc. is possible.

For the circuit in the touch panel driving part among the AHL-120N5 peripheral circuits, use the GUNZE recommendable circuit. (Refer to "15. Peripheral Circuit Example".)

- 2. Features
- (1) Power supply
 - 3.0 to 5.5V
- (2) Clock frequency
 - 20MHz
- (3) Output data resolution
 - 12 bits (4,096 \times 4,096)
 - NOTE) This numerical value is the electrical resolution of AHL-120N5. The electrical resolution in the touch panel key area is lower than this numerical value, which differs among the touch panels. In addition, the data which are really Electrical resolution is 10bits resolution ($1,024 \times 1,024$).
- (4) Output system
 - Serial (Asynchronous mode)
 - USB (Universal Serial Bus)
- (5) Output datarate
 - 80 cps (Serial interface)
 - NOTE) Under the following communication conditions:

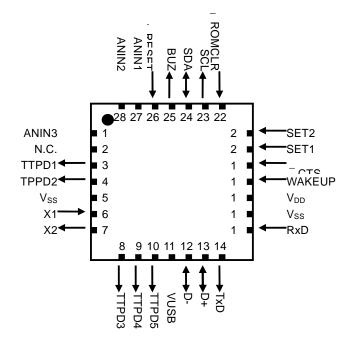
Communication speed	:	9,600 bps
Parity	:	None
Data length	:	8 bits
Stop bit length	:	1 bit
0 and (LICD interface)		

- 100 cps (USB interface)

- * cps: <u>C</u>o-ordinate point <u>P</u>er <u>S</u>econd
- (6) Output mode
 - Continuous (The coordinate data is transmitted while the touch panel is being touched.)
 - Make (The coordinate data is transmitted when the touch panel is touched.)
 - Make & break (The coordinate data is transmitted when the touch panel is touched and released.)
- (7) Applicable touch panel
 - GUNZE's 5-wire conductive layer type analog touch panel
- (8) External shape

28-pin QFN (6 \times 6 \times 0.9 mm)

- (9) Environmental characteristics
 - -RoHS compliant

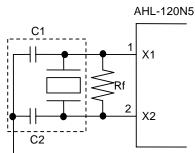

3. Usage precaution of 5-wire touch panel

- The characteristics of 5-wire touch panels may pose some difficulty in the performance of intended operations with the standard Windows GUI (especially classic style) due to disagreement between the cursor and touch positions caused by the linearity error (±2%).
- The characteristics of 5-wire touch panels may require design considerate of the linearity error in the development of applications (screen, icons, buttons, etc.). Investigate the actual operating environment sufficiently to avoid problems. The following are some points for consideration:
 - Provide input-sensitive areas larger than the respective buttons, etc. included (to allow for the linearity error).
 - Setting up a button, etc., on the edge of the screen may pose difficulty in touching due to the error.
 - When using a pen for graphical input, character recognition, etc., output may disagree with the input position due to the effects of the linearity error.

1st Edition

4. Terminal Arrangement Drawing

GUNZE


5. Terminal Function

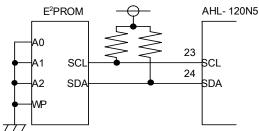
Pin No.	Terminal Name	Input/ Output	Function	Pin No.	Terminal Name	Input/ Output	Function
26	⁻ RESET	Ι	External reset input	18	WAKEUP	Ι	Release USB suspend
27	ANIN1		Touch panel input	19	⁻ CTS	Ι	Serial PnP trigger input *1
28	ANIN2		Touch panel input	20	SET1	Ι	I/F selection *1
1	ANIN3		Touch panel input	21	SET2	Ι	Working Mode selection *1
3	TTPD1	0	Touch panel control	22	⁻ ROMCLR	Ι	EEPROM data reset*1
4	TTPD2	0	Touch panel control	23	SCL	0	EEPROM clock output *1
8	TTPD3	0	Touch panel control	24	SDA	I/O	EEPROM date Input/Output *1
9	TTPD4	0	Touch panel control	25	BUZ	0	Buzzer output
10	TTPD5	0	Touch panel control	6	X1	Ι	Clock input (connect oscillator)
12	D-	I/O	USBdata sending & receiving	7	X2	0	Clock output (connect oscillator)
13	D+	I/O	USBdata sending & receiving	11	VUSB		Power supply for USB
14	TxD	0	serial data sending	17	V_{DD}		Power supply
15	RxD	Ι	serial data receiving	5,16	V_{SS}		Ground
				2	N.C.		Open

*1: Please do pull-up 19-24 pins to VDD through $10k\Omega$ resistance.

6. Clock

Crystal or the ceramic resonator of 20MHz is connected between X1(6pin) and X2(7pin) of AHL-120N5.

777


Our company confirms operation by the following ceramic resonators. MURATA CSTCE20M0V53A Built-in Load Capacitance (C1, C2) 15pF External feedback resister $1M\Omega$

7. EEPROM Connection

By connecting the serial EEPROM (Microchip 24LC00 or its equivalent) of the I^2C system to the AHL-120N5, setting value can be saved.

When [–] ROMCLR(22pin) become the High level after keeping the Low level more than 25ms, the setting contents

are initialized. The data to save are really 8byte. The connection is as shown in the figure below.

///Connect write-protect pin and address pin to VSS.

* When the EEPROM is not used, AHL-120N5 of 23,24-pin should be pull-up through $10k\Omega$ resistance.

8. Electrical Characteristics

(1) Absolute maximum rating	
Operating ambient temperature	-40 - 85
Storage temperature	-65 - 150
Input voltage (besides V _{DD})	-0.3V - (VDD+0.3V)
Input voltage (V _{DD})	-0.3V - 7.5V
Power consumption	1.0W
Max current (inflow V _{SS})	300mA
Max current (outflow V _{DD})	250mA
Input current clamp ($V_I < 0$ or $V_I > V_{DD}$)	±20mA
Output current clamp ($V_0 < 0$ or $V_0 > V_{DD}$)	±20mA
Max output sink current (each I/O pins)	25mA
Max output current source (each I/O pins)	25mA
Max sink current (all I/O pins)	200mA
Max source current (all I/O pins)	200mA

NOTE) where the unit was used with the absolute maximum rating exceeded, permanent breakdown may be caused to the AHL-120N5. In normal operation, it is desirable to use this unit under the recommended operating conditions, and if these conditions were exceeded, AHL-120N5 reliability will be adversely affected.

(2) DC characteristics - Supply voltage

$(T_A = -40 \sim 85)$

Item	Symbol	MIN	STD	MAX	Unit	Remarks
Supply Voltage	V _{DD}	3.0	-	5.5	V	
V _{DD} Start Voltage	V _{POR}	-	-	0.7	V	Condition to carry out power on reset surely
V _{DD} Rise Rate	S _{VDD}	0.05	-	-	V/ms	Condition to carry out power on reset surely
Brown-out Reset Voltage	V _{BOR}	2.65	2.79	2.93	V	

(3) DC characteristics - Power consumption

(V_{DD}=5.0V)

Item	Symbol	MIN	STD	MAX	Unit	Remarks
Supply Current	I_{DD}	T _A =-40 - 85	25	60	mA	
		T _A =-40	0.1	19	uA	
Power-Down Current	I_{PD}	T _A =25	0.1	2.0	uA	USB Suspend state
		T _A =85	2.5	15	uA	

(4) DC characteristics

 $(T_A = -40 \sim 85)$

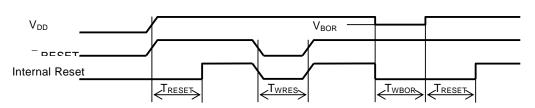
Item	Symbol	MIN	STD	MAX	Unit	Remarks
		V _{DD} < 4.5V	V_{SS}	$0.15V_{DD}$	V	RxD , $^-$ CTS , WAKEUP , SET1 ,
	V_{IL}	4.5V < V _{DD} < 5.5V	-	0.8	V	SET2, ^一 ROMCLR,SDA
Input Low Voltage	- 10		V_{SS}	$0.2V_{DD}$	V	[–] RESET
			V_{SS}	0.3V _{DD}	V	X1
	V_{ILU}	V _{DD} = 4.35V USB Suspended	-	0.8	V	D+ , D-
		V _{DD} < 4.5V	0.25VDD	V_{DD}	V	RxD , $^{-}$ CTS , WAKEUP , SET1 ,
	V_{IH}	4.5V < V _{DD} < 5.5V	2.0	V_{DD}	V	Set2, ^一 Romclr,SDA
Input High Voltage			0.8VDD	V_{DD}	V	[–] RESET
			0.7VDD	V_{DD}	٧	X1
	$V_{\rm IHU}$	V _{DD} = 4.35V USB Suspended	2.4	-	۷	D+ , D-

AHL-120N5

1st Edition

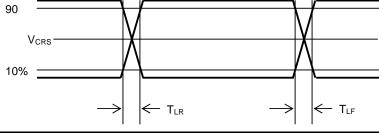
Output Low Voltage		I _{OL} = 8.5mA, V _{DD} = 4.5V	-	0.6	V	TTPD1 ~ 5,TxD,BUZ,SCL,SDA
	V _{OLU}	V _{DD} = 4.35V USB Suspended	-	0.3	V	D+ , D-
Output High Voltage	V _{OH}	$I_{OL} = -3.0 \text{mA}$, $V_{DD} = 4.5 \text{V}$	VDD - 0.7	-	V	TTPD1 ~ 5,TxD,BUZ,SCL,SDA
outputgh voldge	V _{OHU}	V _{DD} = 4.35V USB Suspended	2.8	3.6	V	D+ , D-

(5) USB module specifications


(T_A=-40 - 85)

Item	Symbol	MIN	STD	MAX	Unit	Remarks
USB Voltage	V _{USB}	3.0	-	3.6	V	
Input Leakage on pin	I_{IL}	-	-	±1	uA	V _{SS} V _{PAD} V _{DD} pin at high impedance
Input Low Voltage for USB Buffer	V _{ILUSB}	-	-	0.8	V	
Input High Voltage for USB Buffer	V _{IHUSB}	2.0	-	-	V	
Crossover Voltage	V_{CRS}	1.3	-	2.0	V	
Differential Input Sensitivity	V_{DIFS}	-	-	0.2	V	
Differential Common Mode Range	V _{CM}	0.8	-	2.5	V	
Driver Output Impedance	Z _{OUT}	28	-	44	Ω	
Voltage Output Low	V _{OL}	0.0	-	0.3	V	Pull-up through 15 K Ω
Voltage Output High	V _{OH}	2.8	-	3.6	V	Pull-down through 1.5 K Ω

(6)AC(Timing)requirements


 $(T_A = -40 \sim 85)$

Item	Symbol	MIN	STD	MAX	Unit	Remarks
Low Reset Input Pulse Width	T _{WRES}	2	-	-	us	
Brown-out Reset Pulse Width	T _{WBOR}	2	-	-	us	V _{DD} V _{BOR}
Oscillator Start-up Timer Period	T _{RESET}	67.5	-	77	ms	

(7)USB Timing requirements

USB Data Differential Lines

Item	Symbol	MIN	STD	MAX	Unit	Remarks
Transition Rise Time	T _{LR}	75		300	ns	C _L 200 ~ 600pF
Transition Fall Time	T _{LF}	75		300	ns	C _L 200 ~ 600pF
Rise/Fall Time Matching	T _{LRLF}	80		125	%	

(8) A/D converter characteristics

(VDD = 3.0 - 5.5V)

Item	MIN	STD	MAX	Unit
Resolution	-	-	10	bit
Integral Linearity Error	-	-	<±1	LSB
Differential Linearity Error	-	-	<±1	LSB
Offset Error	-	-	<±1.5	LSB
Gain Error	-	-	<±1	LSB

NOTE) Value of upper list is a characteristic of A./D converter in itself of AHL-120N5.The coordinate data which are output by AHL-120N5 revise voltage of reference electrode and convert 12bit by internal process. Therefore value of upper list is not just applied.

9. Settings

(1) Outline

Mode of operation is determined by connecting specified pin to V_{DD} or Vss.

(2) Setting

Pins(#)	Function	Connect to V _{DD}	Connect to Vss
SET1(20)	I/F selection	USB	Serial
SET2(21)	Working Mode selection	AHL Original	WHQL Mode

(3)Interface selection

Interface Mode is defined by the logical level of Pin -SET1 (20).

(4) Working Mode selection

Working Mode is defined by the logical level of Pin -SET2 (21).

In AHL Original mode, Both USB and Serial can use conventional TTP device driver (TPDD).

WHQL Mode has some characteristics described below.

-USB interface: Based on HID(Human Interface Device)

-Serial interface: Correspond to PnP(Plug and Play)

So, it's possible to use new TTP device diver GZTP which has obtained Microsoft logo.

10. Output Mode

Continuous mode

The positional data is continuously outputted while the touch panel is being touched. When your finger or pen was released from the touch panel, only one data in the release position is outputted. When it is not touched, no data is outputted.

Make mode

When the touch panel was touched, only one initial position data is outputted. Unless the touch panel is touched after your finger or pen was released from the touch panel, the next data is not outputted.

Make & Break mode

When the touch panel was touched, only one initial position data is outputted. When your finger or pen was released from the touch panel, only one release position data is outputted.

Touch input		1
Output		
	←> Touch data	Release data

11. USB Interface

(1) Outline

The AHL-120N5 has the built-in USB (Universal Serial Bus) interface, by which the touch position data can be obtained via the USB port of a personal computer. Also, a device driver for mouse emulation is arranged. The product name of the device driver is TPDD and WHQL.

TPDD supports Windows Me, Windows 2000 and Windows XP, as AHL Original mode.

GZTP PACK supports Windows 2000 and Windows XP as WHQL mode.

(2) Basic specifications

Transfer speed : 1.5 Mbps Transfer format : Interrupt transfer Transfer interval : 10 ms

(3) Data (Response to IN token) format

1) At touch or release:

- AHL Original mode

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
1st byte	1	0	T/R_(*1)	X11	X10	X9	X8	X7
2nd byte	0	0	0	Y11	Y10	Y9	Y8	Y7
3rd byte	0	X6	X5	X4	X3	X2	X1	X0
4th byte	0	Y6	Y5	Y4	Y3	Y2	Y1	Y0

(*1) "1" at touch and "0" at release.

-WHQL mode, based on HID

÷.,									
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	1st byte	0	0	0	0	0	0	0	T/R_
	2nd byte	X7	X6	X5	X4	X3	X2	X1	X0
	3rd byte	0	0	0	0	0	0	X9	X8
	4th byte	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
	5th byte	0	0	0	0	0	0	Y9	Y8

First data after "touched" is "0", after second data is "1", when released then return to "0"

2) When no touch panel is touched:

NAK handshaking is returned.

(4) Descriptor		
1) Device Descriptor		
-for AHL Original mod	e	
Field	Value	Description
bLength	12H	Description
bDescriptorType	01H	Device
bcdUSB	0200H	USB2.0
bDeviceClass	FFH	Vendor Specific
bDeviceSubClass	FFH	Vendor Specific
bDeviceProtocol	FFH	Vendor Specific
bMaxPacketSize0	08H	Vendor Specific
idVendor	0637H	
idProduct	0001H	
		γ
bcdDevice	nnnnH	`nnnn' means the version of F/W
iManufacturer	01H	
iProduct	02H	No. Chain a Docemintory
iSerialNumber	00H	No String Descriptor
bNumConfigurations	01H	
- for WHQL mode base		
Field	Value	Description
bLength	12H	
bDescriptorType	01H	Device
bcdUSB	0200H	USB2.0
bDeviceClass	00H	
bDeviceSubClass	00H	
bDeviceProtocol	00H	
bMaxPacketSize0	08H	
idVendor	0637H	
idProduct	0004H	
bcdDevice	nnnnH	'nnnn' means the version of F/W
iManufacturer	01H	
iProduct	02H	
iSerialNumber	00H	No String Descriptor
bNumConfigurations	01H	
-		
2) Configuration Descriptor		
- for AHL Original mo	de	
Field	Value	Description
bLength	09H	
bDescriptorType	02H	Configuration
wTotalLength	0019H	
bNumInterfaces	01H	
bConfigurationValue	01H	
iConfiguration	00H	No String Descriptor
bmAttributes	10100000B	Bus-Powered, Remote WakeUp
MaxPower	32H	100mA
- for WHQL mode base	ed on HID	
Field	Value	Description
bLength	09H	·
bDescriptorType	02H	Configuration
wTotalLength	0022H	5
bNumInterfaces	01H	
bConfigurationValue	01H	
iConfiguration	00H	No String Descriptor
bmAttributes	10100000B	Bus-Powered, Remote WakeUp
MaxPower	32H	100mA
	5211	10011/1

3) Interface Descriptor		
- for AHL Original m		
Field	Value	Description
bLength	09H	
bDescriptorType	04H	Interface
bInterfaceNumber	00H	
bAlternateSetting	00H	
bNumEndpoints	01H	
bInterfaceClass	FFH	Vendor Specific
bInterfaceSubClass	FFH	Vendor Specific
bInterfaceProtocol	FFH	Vendor Specific
iInterface	00H	No String Descriptor
- for WHQL mode ba	sed on HID	
Field	Value	Description
bLength	09H	
bDescriptorType	04H	Interface
bInterfaceNumber	00H	
bAlternateSetting	00H	
bNumEndpoints	01H	
bInterfaceClass	03H	HID
bInterfaceSubClass	01H	Boot
bInterfaceProtocol	02H	Mouse
iInterface	00H	No String Descriptor
4) HID Descriptor		
- for WHQL mode ba	sed on HID only	
Field	Value	Description
bLength	09H	
bDescriptorType	21H	Interface
bcdHID	0110H	HID 1.1
bCountryCode	00H	Not Localized
bNumDescriptors	01H	
bDescriptorType	22H	Report
wDescriptorLength	003AH	·
5) Endpoint Descriptor		
-for both AHL Origin	al mode and WHC	2L mode based on HID
Field	Value	Description
bLength	07H	-
bDescriptorType	05H	Endpoint
bEndpointAddress	81H	Endpoint1, IN
bmAttributes	00000011B	Interrupt Transaction
wMaxPacketSize	0008H	

0008H

0AH

wMaxPacketSize bInterval

10msec

6) String Descriptor

6) String Descriptor						
-for both AHL Original mode and WHQL mode based on HID						
Field	Value	Description				
bLength	04H					
bDescriptorType	03H	String				
wLangID	0409H	English				
[Index1]						
Field	Value	Description				
BLength	0CH					
BDescriptorType	03H	String				
BString	"GUNZE"(Unicode)					
[Index2]						
Field	Value	Description				
BLength	34H					
BDescriptorType	03H	String				
BString	"GUNZE Touch Pan	el(5 Wire)"(Unicode)				
Report Descriptor						
-for WHQL mode base	•					
Value	Description					
05H, 01H	USAGE_PAGE (Gen	eric Desktop)				
09H, 02H	USAGE (Mouse)					
A1H, 01H	COLLECTION (Appl	lication)				
09H, 01H	USAGE (Pointer)					
A1H, 00H	COLLECTION (PHy	,				
05H, 09H	USAGE_PAGE (Butt	·				
19H, 01H	USAGE_MINIMUM	. ,				
29H, 03H	USAGE_MAXIMUM	. ,				
15H, 00H	LOGICAL_MINIMU	.,				
25H, 01H	LOGICAL_MAXIMU					
95H, 03H	REPORT_COUNT (3	3)				
75H, 01H	REPORT_SIZE (1)	h =)				
81H, 02H	INPUT (Data, Var, A	-				
95H, 01H	REPORT_COUNT (1 REPORT_SIZE (5)	L)				
75H, 05H 81H, 01H	- 、 ,					
05H, 01H	INPUT (Cnst,Ary,Al USAGE_PAGE (Gen					
09H, 30H	USAGE (X)	enc Desktop)				
09H, 31H	USAGE (Y)					
16H, 00H, 00H	LOGICAL_MINIMU	M (O)				
26H, FFH, 0FH	LOGICAL_MAXIMU					
36H, 00H, 00H	PHYSICAL_MINIMU					
46H, FFH, 0FH	PHYSICAL_MAXIMU					
95H, 02H	REPORT_COUNT (2	· · ·				
75H, 10H	REPORT_SIZE (16)	,				
81H, 02H	INPUT (Data,Var,A					
COH	END_COLLECTION	,				
СОН	END_COLLECTION					
001						

12. Serial Interface

(1) Outline

Using asynchronous mode serial, touch position data and command communication can be carried out. By connecting EIA-232D (RS-323C) transceiver, direct connection to the COM port of a personal computer, etc. is possible. Also available is the device driver for mouse emulation. By using this unit, the touch panel can be used in place of the mouse.

TPDD supports Windows Me, Windows 2000, Windows XP and Windows Vista, as AHL Original mode. GZTP PACK supports Windows XP and Windows Vista as WHQL mode.

*As for other device drivers released before, please contact us without hesitate.

(2) Output mode

Continuous, Make, Make & Break

Note) The underline is the default setting. Where EEPROM is connected externally, the changed communication mode can be saved.

(3) Communication format

-	Communication speed	:	1200/ 2400 / 4800 / <u>9600 /</u> 19200/ 38400 bps	

-	Data length	:	8 bits
-	Parity	:	None
-	Stop bit	:	1 bit

- Flow control : Software (Xon / Xoff)

(4) Text format

- According to 8-bit ASCII format, one data is transmitted at 11 or 12bytes.

HEADERX Coordinate',' (2Ch)Y CoordinateCR (0Dh)LF (0Ah)*('T'/'R')(4 bytes)',' (2Ch)(4 bytes)CR (0Dh)LF (0Ah)*		 	1		
		',' (2Ch)		CR (0Dh)	LF (0Ah)*

* Where "CR" + "LF" was set as a delimiter:

NOTE) The delimiter default is only "CR". Where EEPROM is connected externally, the change to "CR + "LF" can be saved.

Example in Continuous Mode:

T1234,2345 \leftarrow When the touch panel was depressed

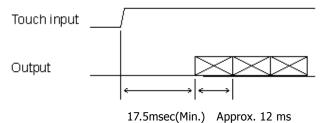
T1234,2344

T1234,2344 :

When the touch panel is continuously depressed

:

```
T1234,2344
```


R1234,2344 \leftarrow The touch panel was released.

- * The data while the touch panel is being depressed is transmitted with "T" prefixed as a header, and when the touch panel was released, only one data is transmitted with "R" prefixed as a header.
- * The data is the numeral of 0 to 4095 (decimal) for both X and Y.
- * Where the AHL-120N5 and touch panel were connected as specified, the touch panel left lower part becomes the origin.
 - NOTE) Because of the resistance included in the circuit wiring of the touch panel and the circuit board, the data of (0, 0) is not outputted even when the touch panel left lower part is depressed. Also, even the touch panel right upper part is depressed, the data of (4095, 4095) is not outputted. Actually, 0 to 4095 inside data are outputted. (Example: 50 to 4040)

(5) Response speed

NOTE) The communication speed are as 9600 bps data.

(6) Output rate

- Approx. 80 cps (cps: <u>C</u>o-ordinate <u>P</u>er <u>S</u>econd) NOTE) The communication speed are as 9600 bps data.

(7) Command System

Command	Operation	
	Resets the AHL-120N5. However, if this command is received during data transmission, the	
RE	data being transmitted may be in disorder.	
DI	Diagnosis of the AHL-120N5. In the normal condition, "Pass" is returned.	
DI	* "_" means the space.	
SR	Transmission stop. The command is accepted, however. During data transmission, the	
51	transmission is stopped from the next data.	
BR	Transmission re-start	
VE	Returns software version "Vn.nn_".	
VL	* "_" means the space.	
LF	The data delimiter should be "CR(0Dh)" + "LF (0Ah). However, where no EEPROM is	
	connected, the delimiter returns to "CR" if the AHL-120N5 is reset.	
CR	The data delimiter should be "CR (0Dh)".	
XL	Returns the reference data on the X-coordinate low voltage side. The reference data refers to	
	the data in the touch panel electrode part.	
XH	Returns the reference data on X-coordinate high-voltage side.	
YL	Returns the reference data on Y-coordinate low-voltage side.	
YH	Returns the reference data on Y-coordinate high-voltage side.	
SM (MM)	Sets to the Make mode. However, where no EEPROM is connected, the unit returns to the	
511 (111)	continuous mode if the AHL-120N5 is reset.	
MB	Sets to the Make & Break mode. However, where no EEPROM is connected, the unit returns to	
	the continuous mode if the AHL-120N5 is reset.	
CM	Sets to the Continuous mode.	
	Changes the communication speed. However, where no EEPROM is connected, the default is	
T "bb"	selected if the AHL-120N5 is reset. NOTES)	
	bb : Communication speed "19" (19200) / "96" (9600) / "48" (4800) / "24" (2400) / "12"	
	(1200)	
	Respond Buzzer duration. Relation between responded value and approximate time duration is	
	as follows	
	00ms(No sound)	
BZ	125ms 250ms	
	375ms	
	4100ms	
	5125ms	
	Change Buzzer duration (#=0 - 5).	
	BZ0 Oms (No sound)	
	BZ1 About 25ms	
	BZ2 About 50ms	
BZ#	BZ3 About 75ms	
	BZ4 About 100ms	
	BZ5 About 125ms	
	In case of no EEPROM and after reset of AHL-120N5, initial value returns to BZ4(100ms).	
	Clear the content of EEPROM and reset. Set the content of EEPROM default values after	
EA	resetting.	
	ى ى	

- NOTES) (1) Transmit the command in the ASCII format.
 - (2) When transmitting the command, send "CR" (0Dh) lastly (as a delimiter).
 - (3) Any letter, capital or small, is effective for the command.
 - (4) The command is executed immediately upon receipt thereof. The command is accepted even when the AHL-120N5 is being transmitted, and for the command with response data, such as "DI" and "VE" commands, the response data is outputted in the course of position data, and then, the position data is outputted again.

(Example) "DI" command

: T0381,0892 T0381,0892 T0380,0892 Pass T0380,0893 T0381,0892 : :

- (5) For the response data to the command, normally, transmit "CR" (0Dh) lastly (as a delimiter).
- (6) Where the command could not be received normally or the command that is not present in the list was sent, it is disregarded. (No data is outputted.)
- (7) The interval between commands should be 15 ms or more. However, it should be more after "RE" command. Therefore, please do an enough test when you transmit the command after "RE".

(8) Output pattern when the transmission stop and transmission restart commands were received

<Pattern 1>

	 "SR" command ↓	"BR" command ↓
Touch input		
Output Continuous		
Make		
Make & Break		
<pattern 2=""></pattern>		
	"SR" command	"BR" command
	 \downarrow	
Touch input		
Output Continuous		
Make		
Make & Break		
<pattern 3=""></pattern>		
	"SR" command	"BR" command
	 \downarrow	\downarrow
Touch input		
Output Continuous		
Make		
Make & Break		\square

* Each pulse of output is one-point data.

(9)About Plug and Play

AHL-120N5 has a mode which acts as Plug and Play device for Windows. [Control Panel]-[Add Hardware] or [Device Manager]-[Scan for Hardware Changes] can detect AHL-120N5.

To use as a Plug and Play Device connect Pin⁻CTS(19) to RTS of Host-PC.

13. Other Functions

(1) Reset

AHL-120N5 has the built-in reset function described below. Therefore the reset circuit and the blackout detecting circuit are unnecessary externally.

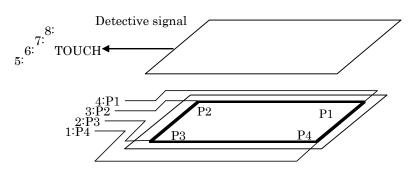
(a) Power on reset

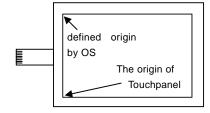
When a power supply was supplied, power-on reset is carried out.

(b) Brown-out reset

When the supply voltage (VDD) deteriorate about 2.7V during movement, Brown-out reset AHL-120N5 inside. When VDD was as above about 4.1V again, the reset is removed. By this, When a power supply is unstable, Brown-out reset can evade malfunction that can occur.

(2) Buzzer


When touch input was settled, output the pulse of the 'H' level on a BUZ terminal (25 pins). By connecting a buzzer to this terminal, a beep occurs at the time of a touch.


The pulse width (the length of the buzzer) sets it by a BZ# command (in the case of serial interface) in 0 - 125msec.

NOTE) The drive of the buzzer is not possible with a BUZ terminal. Therefore constitute an appropriate drive circuit.

(3) The origin of coordinates

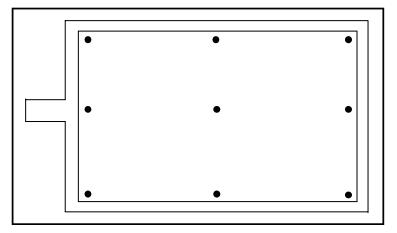
When AHL-120N5 is connected with Touch Panel as showed as below, lower left will be the origin.

(4) Calibration

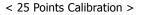
(a) User calibration

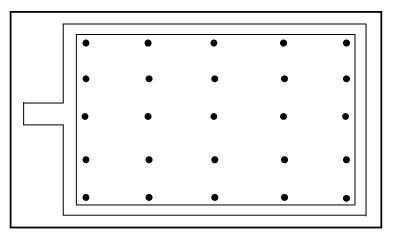
In the touch panel module in which the touch panel and display were laminated, the touch panel pressing position and display position must be aligned with each other. This is called "user calibration". This user calibration should be carried out when the touch panel module is used for the first time, and the touch panel pressing position and display position shifted, for example.

Note) The position data in the same point of the touch panels could be different among same-configured modules depending on the resistance value of touch panel.

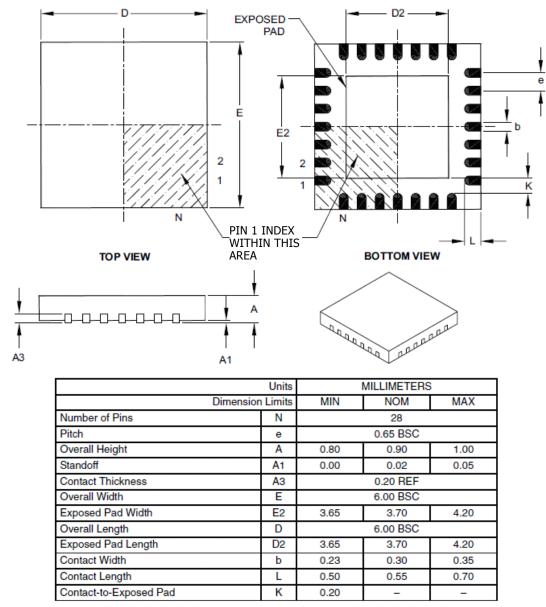

(b) Correct of calibration for curve of equipotential line

In 5-wire touch panel, equipotential line is curved near the electrode around input area in cause of the construction of lower electrode. This correct of calculation is called correct of calibration for curve of equipotential line.

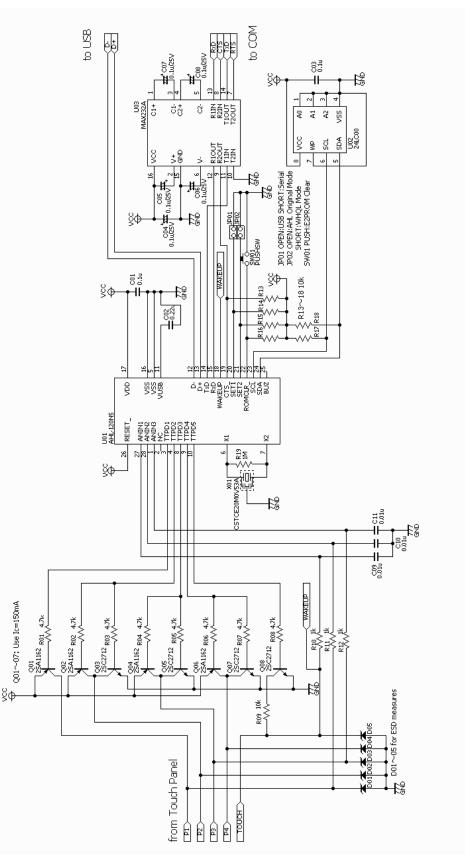

In our company, (a) and (b) calibrations are carried out with the driver "TPDD". Calibration is set up to 9 points calibration as default.


Expected higher accurate calibration, put in 25 points calibration.

NOTE) In touch panel, curve of equipotential line is NOT generated.


< 9 Points Calibration >

14. Outline Drawing


GUNZE

Please connect the area of EXPOSED PAD with VSS when the printed wiring board is designed.

15. Peripheral Circuit Example

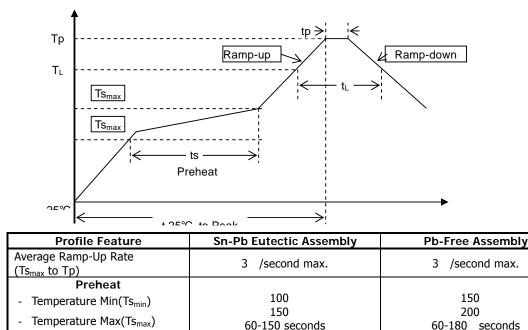
16. Mounting Conditions

- Time (Ts_{min} to Ts_{max})

Temperature(T_L)

- Time(t L) Peak/Classification

Temperature(Tp) Time within 5 c


Temperature (tp) Ramp-Down Rate

Time maintained above:

Time 25 to Peak Temperature

of actual Peak

The profile of the reflow soldering of AHL-120N5 is based on J-STD-020C of the JEDEC standard.

183

240 +0/-5

10-30 seconds

6 /second max.

6 minutes max.

60-150 seconds

217

260 +0

20-40 seconds

6 /second max.

8 minutes max.

60-150 seconds

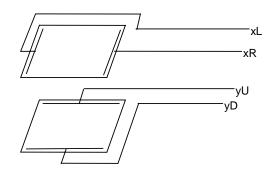
17. Warranty Period and Warranty Range

(1) Warranty period

The warranty period should be one (1) year after the date of delivery.

(2) Warranty range

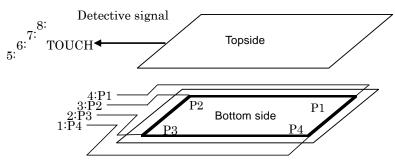
In the warranty period, if there arises failure or damage due to our nonconformity, our company is ready to repair or replace the defectives. However, in the following cases, the defectives are excluded from the warranty range.


- (a) Failure and damage caused by your mishandling, such as fall and shocks during transportation (movement) after delivery
- (b) Failure and damage caused by disasters and accidents
- (c) Repair & remodeling at other than our company
- (d) Failure and damage caused by handling that runs counter to the usage and precautions described in this specification
- NOTE) Only the delivered product should be guaranteed, and any damage induced due to delivered product failure, repair and replacement on work site should be out of the warranty range.

18. Appendix

(1).Difference between 4- and 5-wire touch panels

(a) 4-wire touch panel



The analog voltage value (position data) in the pressing position is converted to the digital value as it is for output.

Example) When 5 V DC is applied to the touch panel and the analog voltage value in the pressing position is 2 V;

 $2(V) / 5(V) \times 4095 = 1636$ Thus, "1636" is outputted.

(b) 5-wire touch panel

The type of square electrode is printed in the lower layer. This layer is given voltage in case of getting data of the X coordinates or the Y coordinate. So although the top layer film is scratched, the linearity is not affected.

Ex) (Getting X coordinates data)

P1,P4 voltage = 5V, P2,P3 voltage = 0V, the measuring voltage of being pushed TOUCH (Getting Y coordinates data) P1,P2 voltage = 5V, P3,P4 voltage = 0V, the measuring voltage of being pushed TOUCH

NOTE) In 5-wire touch panel, equipotential line is curved near the electrode around input area in cause of the construction of lower electrode. Please see the "13.0ther Functions" in detail about this correction.